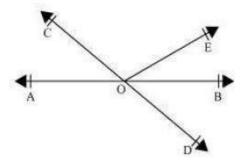
Class 9th Maths

Chapter 6: Lines and Angles

Exercise 6.1

Question 1:

In the given figure, lines AB and CD intersect at O. If $\angle AOC + \angle BOE = 70^{\circ}$ and $\angle BOD = 40^{\circ}$, find $\angle BOE$ and reflex $\angle COE$.



Answer:

AB is a straight line, rays OC and OE stand on it.

$$\Rightarrow$$
 (\angle AOC + \angle BOE) + \angle COE = 180°

$$\Rightarrow$$
 70° + \angle COE = 180°

$$\Rightarrow \angle COE = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

Reflex
$$\angle$$
COE = 360° -110° = 250°

CD is a straight line, rays OE and OB stand on it.

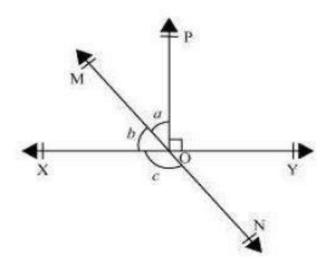
$$\therefore$$
 \angle COE + \angle BOE + \angle BOD = 180°

$$\Rightarrow$$
 110° + \angle BOE + 40° = 180°

$$\Rightarrow$$
 $\angle BOE = 180^{\circ} - 150^{\circ} = 30^{\circ}$

Question 2:

In the given figure, lines XY and MN intersect at O. If \angle POY = 90° and a:b=2:3, find c.



Let the common ratio between a and b be x.

$$\therefore a = 2x$$
, and $b = 3x$

XY is a straight line, rays OM and OP stand on it.

$$b + a + \angle POY = 180^{\circ}$$

$$3x + 2x + 90^{\circ} = 180^{\circ}$$

$$5x = 90^{\circ}$$

$$x = 180$$

$$a = 2x = 2 \times 18 = 36^{\circ}$$

$$b = 3x = 3 \times 18 = 54^{\circ}$$

MN is a straight line. Ray OX stands on it.

$$\therefore b + c = 180^{\circ}$$
 (Linear Pair)

$$54^{\circ} + c = 180^{\circ}$$

$$c = 180^{\circ} - 54^{\circ} = 126^{\circ}$$

$$c = 126^{\circ}$$

It can be observed that,

$$x + y + z + w = 360^{\circ}$$
 (Complete angle)

It is given that,

$$x + y = z + w$$

$$x + y + x + y = 360^{\circ}$$

$$2(x + y) = 360^{\circ}$$

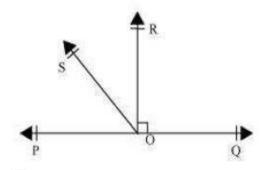
$$x + y = 180^{\circ}$$

Since x and y form a linear pair, AOB is a line.

Question 5:

In the given figure, POQ is a line. Ray OR is perpendicular to line PQ. OS is another ray lying between rays OP and OR. Prove that

$$\angle ROS = \frac{1}{2} (\angle QOS - \angle POS).$$



Answer:

It is given that OR \perp PQ

$$\square$$
 \square POS + \square SOR = 90°

$$\square ROS = 90^{\circ} - \square POS \dots (1)$$

$$\square$$
QOR = 90° (As OR \square PQ)

$$\square$$
QOS - \square ROS = 90°

On adding equations (1) and (2), we obtain

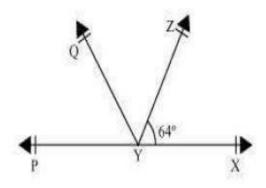
$$2 \square ROS = \square QOS - \square POS$$

$$\Box ROS = \frac{1}{2} (\Box QOS - \Box POS)$$

Question 6:

It is given that $\square XYZ = 64^{\circ}$ and XY is produced to point P. Draw a figure from the given information. If ray YQ bisects $\square ZYP$, find $\square XYQ$ and reflex $\square QYP$.

Answer:



It is given that line YQ bisects \square PYZ.

Hence, \Box QYP = \Box ZYQ

It can be observed that PX is a line. Rays YQ and YZ stand on it.

$$\square$$
 \square XYZ + \square ZYQ + \square QYP = 180°

$$\Box$$
 64° + 2 \Box QYP = 180°

$$\square \ 2\square QYP = 180^{\circ} - 64^{\circ} = 116^{\circ}$$

$$\square$$
 \square QYP = 58°

Also,
$$\square ZYQ = \square QYP = 58^{\circ}$$

Reflex
$$\Box$$
QYP = 360° - 58° = 302°

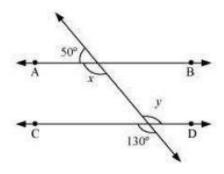
$$\square XYQ = \square XYZ + \square ZYQ$$

$$= 64^{\circ} + 58^{\circ} = 122^{\circ}$$

Exercise 6.2

Question 1:

In the given figure, find the values of x and y and then show that AB || CD.



Answer:

It can be observed that,

 $50^{\circ} + x = 180^{\circ}$ (Linear pair)

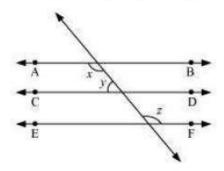
$$x = 130^{\circ} \dots (1)$$

Also, $y = 130^{\circ}$ (Vertically opposite angles)

As x and y are alternate interior angles for lines AB and CD and also measures of these angles are equal to each other, therefore, line AB $\mid\mid$ CD.

Question 2:

In the given figure, if AB || CD, CD || EF and y: z = 3: 7, find x.



Answer:

It is given that AB || CD and CD || EF

☐ AB | CD | EF (Lines parallel to the same line are parallel to each other)

It can be observed that

x = z (Alternate interior angles) ... (1)

It is given that y: z = 3: 7

Let the common ratio between y and z be a.

 $\square y = 3a$ and z = 7a

Also, $x + y = 180^{\circ}$ (Co-interior angles on the same side of the transversal)

 $z + y = 180^{\circ}$ [Using equation (1)]

$$7a + 3a = 180^{\circ}$$

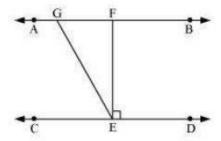
$$10a = 180^{\circ}$$

$$a = 18^{\circ}$$

$$\Box x = 7a = 7 \times 18^{\circ} = 126^{\circ}$$

Question 3:

In the given figure, If AB || CD, EF || CD and || GED = 126°, find || AGE, || GEF and || FGE.



Answer:

It is given that,

AB || CD

EF □ CD

□GED = 126°

☐ ☐GEF + ☐FED = 126°

☐ ☐GEF + 90° = 126°

☐ ☐GEF = 36°

□AGE and □GED are alternate interior angles.

□ □AGE = □GED = 126°

However, $\square AGE + \square FGE = 180^{\circ}$ (Linear pair)

□ 126° + □FGE = 180°

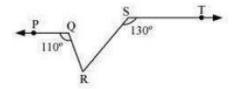
 \Box \Box FGE = 180° - 126° = 54°

□ □AGE = 126°, □GEF = 36°, □FGE = 54°

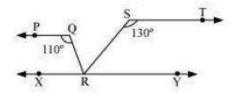
Question 4:

In the given figure, if PQ || ST, \square PQR = 110° and \square RST = 130°, find \square QRS.

[Hint: Draw a line parallel to ST through point R.]



Answer:



Let us draw a line XY parallel to ST and passing through point R.

 $\square PQR + \square QRX = 180^{\circ}$ (Co-interior angles on the same side of transversal QR)

□ 110° + □QRX = 180°

□ □QRX = 70°

Also,

 \square RST + \square SRY = 180° (Co-interior angles on the same side of transversal SR)

130° + □SRY = 180°

□SRY = 50°

XY is a straight line. RQ and RS stand on it.

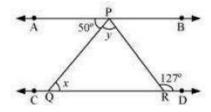
 \square \square QRX + \square QRS + \square SRY = 180°

70° + □QRS + 50° = 180°

 \square QRS = 180° - 120° = 60°

Question 5:

In the given figure, if AB || CD, \Box APQ = 50° and \Box PRD = 127°, find x and y.



 \square APR = \square PRD (Alternate interior angles)

$$50^{\circ} + y = 127^{\circ}$$

$$y = 127^{\circ} - 50^{\circ}$$

$$y = 77^{\circ}$$

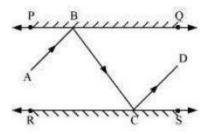
Also, $\square APQ = \square PQR$ (Alternate interior angles)

$$50^{\circ} = x$$

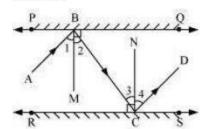
$$\Box x = 50^{\circ} \text{ and } y = 77^{\circ}$$

Question 6:

In the given figure, PQ and RS are two mirrors placed parallel to each other. An incident ray AB strikes the mirror PQ at B, the reflected ray moves along the path BC and strikes the mirror RS at C and again reflects back along CD. Prove that AB || CD.



Answer:



Let us draw BM \square PQ and CN \square RS.

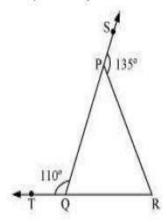
As PO II RS

Therefore, BM CN
Thus, BM and CN are two parallel lines and a transversal line BC cuts them at B and
C respectively.
$\square \square 2 = \square 3$ (Alternate interior angles)
However, $\Box 1 = \Box 2$ and $\Box 3 = \Box 4$ (By laws of reflection)
\Box 1 = \Box 2 = \Box 3 = \Box 4
Also, $\Box 1 + \Box 2 = \Box 3 + \Box 4$
□ABC = □DCB
However, these are alternate interior angles.
□ AB CD

Exercise 6.3

Question 1:

In the given figure, sides QP and RQ of \triangle PQR are produced to points S and T respectively. If \square SPR = 135° and \square PQT = 110°, find \square PRQ.



Answer:

It is given that,

 \square SPR = 135° and \square PQT = 110°

 \Box SPR + \Box QPR = 180° (Linear pair angles)

□ 135° + □QPR = 180°

□ □QPR = 45°

Also, $\Box PQT + \Box PQR = 180^{\circ}$ (Linear pair angles)

 $\Box 110^{\circ} + \Box PQR = 180^{\circ}$

□ □PQR = 70°

As the sum of all interior angles of a triangle is 180°, therefore, for ΔPQR ,

 \square QPR + \square PQR + \square PRQ = 180°

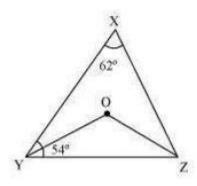
 \Box 45° + 70° + \Box PRQ = 180°

 \square \square PRQ = 180° - 115°

□ □PRQ = 65°

Question 2:

In the given figure, $\Box X = 62^{\circ}$, $\Box XYZ = 54^{\circ}$. If YO and ZO are the bisectors of $\Box XYZ$ and $\Box XZY$ respectively of ΔXYZ , find $\Box OZY$ and $\Box YOZ$.



As the sum of all interior angles of a triangle is 180°, therefore, for ΔΧΥΖ,

$$\Box X + \Box XYZ + \Box XZY = 180^{\circ}$$

$$62^{\circ} + 54^{\circ} + \square XZY = 180^{\circ}$$

$$\Box XZY = 180^{\circ} - 116^{\circ}$$

$$\square XZY = 64^{\circ}$$

 $\square OZY = 2 = 32^{\circ} (OZ \text{ is the angle bisector of } \square XZY)$

Similarly,
$$\square OYZ = \frac{54}{2} = 27^{\circ}$$

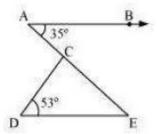
Using angle sum property for ΔOYZ , we obtain

$$\Box$$
OYZ + \Box YOZ + \Box OZY = 180°

$$\Box$$
YOZ = 180° - 59°

Question 3:

In the given figure, if AB || DE, \square BAC = 35° and \square CDE = 53°, find \square DCE.



Answer:

AB || DE and AE is a transversal.

 \square BAC = \square CED (Alternate interior angles)

☐ ☐CED = 35°

In ΔCDE,

 \Box CDE + \Box CED + \Box DCE = 180° (Angle sum property of a triangle)

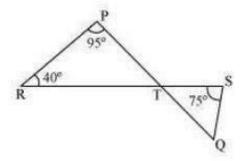
53° + 35° + □DCE = 180°

□DCE = 180° - 88°

□DCE = 92°

Question 4:

In the given figure, if lines PQ and RS intersect at point T, such that \Box PRT = 40 \Box RPT = 95° and \Box TSQ = 75°, find \Box SQT.



Answer:

Using angle sum property for ΔPRT , we obtain

 \Box PRT + \Box RPT + \Box PTR = 180°

40° + 95° + □PTR = 180°

 \Box PTR = 180° - 135°

□PTR = 45°

 \square STQ = \square PTR = 45° (Vertically opposite angles)

□STQ = 45°

By using angle sum property for ΔSTQ, we obtain

 \Box STQ + \Box SQT + \Box QST = 180°

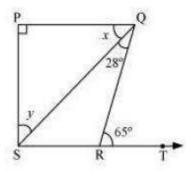
 $45^{\circ} + \Box SQT + 75^{\circ} = 180^{\circ}$

 $\Box SQT = 180^{\circ} - 120^{\circ}$

□SQT = 60°

Question 5:

In the given figure, if PQ \square PS, PQ || SR, \square SQR = 28° and \square QRT = 65°, then find the values of x and y.



Answer:

It is given that PQ || SR and QR is a transversal line.

 $\square PQR = \square QRT$ (Alternate interior angles)

$$x + 28^{\circ} = 65^{\circ}$$

$$x = 65^{\circ} - 28^{\circ}$$

$$x = 37^{\circ}$$

By using the angle sum property for Δ SPQ, we obtain

$$\Box SPQ + x + y = 180^{\circ}$$

$$90^{\circ} + 37^{\circ} + y = 180^{\circ}$$

$$y = 180^{\circ} - 127^{\circ}$$

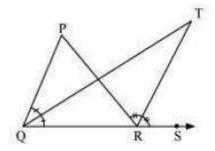
$$y = 53^{\circ}$$

$$\therefore x = 37^{\circ} \text{ and } y = 53^{\circ}$$

Question 6:

In the given figure, the side QR of Δ PQR is produced to a point S. If the bisectors of

 \square PQR and \square PRS meet at point T, then prove that \square QTR= $\frac{1}{2}$ \square QPR.



In ∆QTR, □TRS is an exterior angle.

∴ □QTR + □TQR = □TRS

 $\square QTR = \square TRS - \square TQR (1)$

For $\triangle PQR$, $\square PRS$ is an external angle.

∴ □QPR + □PQR = □PRS

 \square QPR + 2 \square TQR = 2 \square TRS (As QT and RT are angle bisectors)

 \square QPR = 2(\square TRS - \square TQR)

 \square QPR = 2 \square QTR [By using equation (1)]

 $\Box QTR = \frac{1}{2} \Box QPR$